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The stability of plane Poiseuille flow of a dusty gas 

By D. H. MICHAEL 
Department of Mathematics, University College London 

(Received 3 May 1963) 

In this paper some approximate results are presented for the problem of the 
stability of plane Poiseuille flow of a dusty gas, following a formulation given 
recently by Saffman (1962). It is assumed that the mass concentration of the 
dust, f, is small, and results are obtained by making a perturbation of the curve 
of neutral stability for a clean gas, using the approximate solutions given by 
Stuart (1954). The perturbation equation is expressed in terms of integrals by 
introducing the adjoint wave function, the calculation of which is described. 
The integral coefficients were evaluated by numerical integration using a 
Mercury computer, and the results are illustrated for f = 0.05 by a set of per- 
turbed neutral stability curves a t  different values of the time relaxation parameter 
SR varying from 0 to 500. These results, whilst not of great numerical accuracy, 
are sufficient to show qualitatively how the curve of neutral stability is modified 
by the presence of the dust. 

1. Introduction 
In a recent paper Saffman (1962) has given a formulation of the problem of 

the linearized stability of a plane parallel flow of a dusty gas, in which the dust is 
represented macroscopically in terms of a number density of very small particles. 
When the dust particles move relative to the gas it is assumed that Stokes’s 
law of resistance applies, in which case the resulting mathematical problem is as 
follows. 

Let the gas, which is assumed incompressible, have undisturbed velocity 
U(y) in the x direction. The effect of sedimentation is neglected and it is assumed 
that in the undisturbed state the dust is carried along with the gas, i.e. with the 
same velocity U(y). With a plane perturbation stream function of the usual form 
$(y) exp {ia(x - ct)},  Saffman deduced the Orr-Sommerfeld equation for the dusty 
gas, which can be written in dimensionless form 

( P - C X ~ ) ~ $  = iaR{(;Gi-c) (B2-~2)$-(D2;Gi)$} ,  (1) 

where - f ( U - c )  
1 + ia( U - c )  XR’ u =  u+ 

D = d/dy, a is a real wave-number, R the Reynolds number, Ti is a modified 
(complex) velocity profile involving the mass concentration of the dust f, 
SR = UrlL, and r represents the scale of the time which dust particles take to 
follow changes in the gas velocity. A difficult characteristic-value problem is 
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posed by this equation together with no-slip boundary conditions on two walls 
y = f. 1, at which q5 = Dq5 = 0. 

Saffman drew attention to two limiting cases in which the effect of the dust 
can easily be seen. When XR, or r, is small the dust follows the velocity fluctuations 
of the gas without time delay, and the result is to increase the effective density 
of the gas without changing its viscosity. This reduces the value of R for neutral 
stability in the ratio 1/( 1 + f ) ,  as may be seen by approximating ;ii N U + f (  U - c) 
in (1) .  When SR is very large the dust is unaffected by the fluctuations in the 
gas velocity, and the flow is stabilized by the dust damping the perturbation in 
the gas flow. This is demonstrated mathematically by the approximation 
;II N U + (f/iaSR) at large XR, which implies that the problem is equivalent to 
that of a clean gas with a positive time amplification factor flSR. 

The author has taken up some aspects of the mathematical problem in more 
detail, and this paper will describe the results obtained. In  particular, the case 
of plane Poiseuille flow for which U = 1 - y2 is studied. Following the classical 
problem, we consider a disturbance wave function q5(y) which is an even function 
of y, so that we need only apply the two boundary conditions q5 = Dqi = 0 
a t  y = + 1. The problem is made considerably more difficult by the presence of 
two extra independent parameters f and S (or r )  in the equation, and we have not 
so far attempted a formal solution of the problem. Rather, taking account of the 
fact that the formulation of the problem will be valid only for small values off, 
we have performed a linear perturbation of the neutral stability curve for the 
clean gasf = 0, which will give the results likely to be of practical value. 

2. Perturbation problem for smaUf 
Let (a,, R,) be a point on the curve of neutral stability in the (a,  R)  plane for 

the clean gas, with the corresponding wave function q5,( y) and real wave velocity 
c = c,. We write perturbed quantities to the first power in f ,  

a = a,+hf, R = R,+pf, c = co+vf,  qi = (b,+fx(y). (2) 

In  general v may be a complex coefficient, but we shall restrict our calculation to 
finding the perturbed neutral stability curve only, in which case Y will be real. 

When we substitute from ( 2 )  into (l), cancel out the terms of order f O, and put 
the coefficient of f 1  equal to zero, we obtain an equation for the perturbation 
stream function ~ ( y ) ,  

(D2 - E ~ ) ~  x - iaR{( U - C )  (D2 - a2) x - (D2U)  x} 
= 4ah(D2-a2) qi+i(hR+ap){(U-~)  (D2-a2)q5-(D2U)(b) 

\ 

(3) 

where the suffix 0 in a, R, c and # has now been dropped. Equation (3) is an 
inhomogeneous Orr-Sommerfeld equation. Except for the coefficients A, p, v, 
the functions occurring on the right-hand side may be regarded as known from 



Stability of $ow of a dusty gas 21 

the data a t  the unperturbed point on the clean gas curve. Formally we require 
to solve equation (3) for ~ ( y )  subject to the conditions x = D(x)  = 0 a t  y = 1,  
it being supposed that ~ ( y )  like $ ( y )  is an even function of y. The solution for 
~ ( y )  will be of the form 

x = A l X l + A 2 X 2 + h X A + ~ ~ , ~ + v X ~ + R ,  

in which the first two terms give the two independent even solutions of the 
homogeneous equation with the right-hand side zero, and the remaining terms 
are particular integrals grouped according to  their coefficient A, p or if, with 2 
representing the term without any of these coefficients. Substitution in the 
boundary conditions gives two equations of the form 

g11AI + ~ 1 2 A z  = k1+ l1h + m1,~ + nil’, 

cr,lA1+a,,A, = k,+Z,h+m,p+$-n,v. 

Since a linear combination of x1 and x2 is an eigenfunction a t  the unperturbed 
point, 

and it is then necessary that 

The result is therefore one linear relation between A, p, 11, with in general complex 
coefficients, which can be separated into two real simultaneous linear equations. 
The values of A, p, 11 are thus not uniquely determined by this procedure, because 
the direction in which the perturbation from one curve to the other is made needs 
to  be specified. We may, for example, choose perturbations a t  (i) constant a, 
(ii) constant R, or (iii) constant c, for which h = 0, p = 0, or Y = 0, respectively. 
So far as the representation in the (a, R)-plane is concerned we could imagine v 
eliminated between the two equations, and a single linear relation between h 
and p then follows, which gives a straight line of perturbation points for the new 
curve. If one is to follow through this method the central problem is to find suit- 
able expressions for the particular integrals x, xA, x, and xy, bearing in mind that 
these will still contain one of the extra parameters r. One can find without diffi- 
culty series in powers of SR or inverse powers of SR, which will be suitable a t  small 
or large values of SR respectively. However, it is difficult to fill in the cases where 
SR N 1 by this method, and to overcome this we have resorted to another method 
suggested by Dr J. T. Stuart which makes use of the adjoint wave function. 

In recent papers by Stuart (1960) and Watson (1960,1963), the inhomogeneous 
Orr-Sommerfeld equation arises, and they have shown how the adjoint wave 
function may be used to derive integral properties of the solutions. We now 
discuss briefly the adjoint wave function and the way in which it may be used in 
the present problem. 



22 D. H .  Michael 

3. Properties of the adjoint function 
In our case the differential form of interest is 

L($)  5 (D2 - $ - imR[( U - C) ( 0 2  - a2) Q - (D2U)  $1. 
The adjoint form, which we denote by z(&, follows easily from the definition 
(see Ince 1944, $9.31), and is 

z(q?) = ( 0 2 -  a2)2 6 - iaR[( 77 - C) (0'- a2) q? + 2(DU) Dd]. 

where P(Q,'q?) = $[D{(2a2 + iaR( U - c)) $} - D3q?] 
- (D$) [{2a2 + iaR( U - c)) q? - D2q?] 

- (D2$) ( D 6 )  + (D3$) q?. (5) 

In particular, if $(y) is the wave function for the clean gas problem L(Q) = 0,  
and if q? is a solution of the adjoint equation z(q?} = 0,  we have with a = 0,  b = 1, 

[P(Q, $)I: = 0. (6) 

In  our problem, in which U = 1 - y2, $ will be an even function of y which satisfies 
the conditions q5 = DQ = 0 at y = 1, and, if we similarly restrict q? to be an even 
solution of &q?) = 0,  we then have from (5) and (6) 

(D2q5) (D4)  = 4(D3q5) at y = 1.  (7) 

It was shown by Stuart (1960) that, in this particular case, if $(y) satisfies the 
equation L($) = 0,  then $ = (D2-a2)  $ is a solution of the equation x($) = 0. 
It follows that if $,, $2 are the two independent even solutions of L($) = 0, 
then $, = (D2 - a2) $,, g2 = (D2 - a2) $2 are two independent even solutions of z($) = 0. Hence we may write q? as any linear combination of $,, J2,  i.e. 
q? = $, + 8g2. We can satisfy one boundary condition formally on 6 by making 
use of 8. It is most convenient to use 8 to satisfy the condition 6 = 0 at  y = 1. 
It then follows from (7)  that Dq? = 0 at y = 1. (We cannot here impose two arbi- 
trary homogeneous boundary conditions on 6 because the parameter c has 
already been fixed.) 

Coming now to the application to the inhomogeneous Orr-Sommerfeld 
equation, suppose that 

L($) = k(Y), 

where k( y) is an even function of y, and $ is an even function of y satisfying the 
conditions $ = DQ = 0 at y = 1. Then using the adjoint function q? as defined 
above, and substituting in (5) with a = 0,  b = 1, we have 
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In  this context we identify equation (8) with equation (3), writing x instead 
of q5. Hence it follows from (9) that 

Equation (10) is in effect an alternative form of the result (4), but has the advant- 
age of giving an explicit form for the coefficients in the simultaneous equations. 
Looked at  from this point of view the solution is in two parts: (i) the calculation 
of the adjoint wave function 4 and (ii) the evaluation of the integrals arising in 
(10). We now describe the steps taken to obtain a first approximation for the 
adjoint function. 

4. Calculation of 6 
The profile of the adjoint function may be calculated in general at any point 

in the (a, R)-plane, when the corresponding value of c is known from a solution of 
the characteristic-value problem for 4. The main interest at  present is in the 

A B C D E 
a 1.02 0.96 0.80 0.68 0.58 
R 5,460 6,320 10,350 19,400 44,600 

F G H I 3 

U 0.86 1.00 1.10 1.17 1.18 
R 140,000 49,600 21,200 10,150 7,050 

TABLE 1. Values of a and R for neutral stability of plane Poiseuille flow, after 
Stuart (1954). 

points on the neutral curve where c is real. Our calculations provide approximate 
values of the real and imaginary parts of 6 at ten points of the neutral curve 
given approximately by Stuart (1954), which are labelled A, B, . . ., J, according 
to  table 1. 

Following the notation of Stuart we denote the two independent even solutions 
of L($) = 0 by v1 and v3. These solutions have special features near the transition 
from stable to unstable flow because this transition takes place at  large values 
of R. The function v1 is well approximated by an even solution of the inviscid 
equation obtained by neglecting the viscous terms in L($) = 0, i.e. 

( u - c ) ( D 2 - a y $ - - ( P u ) $  = 0. (11) 

This approximate solution becomes inadequate in the neighbourhood of the 
critical layer where U = c,  when c is real. At this point one solution of (11) is 
singular and the viscous terms then become important in determining the 
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transition of the solution across the layer. Thus at  points away from the critical 
layer, where vl is effectively a solution of (1 I), g1 = (D2 - a2) v1 is given approxi- 
mately by 

where yo denotes the level of the critical layer. 
To calculate corrections to this inviscid approximation to G1, we have to take 

account of the solutions of the full equation in the critical layer in which the 
variable 7 is used, where y - yo = €7, c = (aRUo)-), and Ub = - 2yo. A difficulty 
in calculating in terms of 7 is that the scaling of y varies from point to point. 
Bearing in mind that 6 is intended to be used in numerical integrations using a 
computer, on which it is desirable to use a standard programme in each case, 
the calculation has been made for standard values of y given by y = 0 (0.05) 0.80 
(0.02) 1.0. The smaller interval 0.02 was used between 0.8 and 1.0 to get a better 
description of the functions across the critical layer, where the variations are in 
some cases very erratic. 

The following is a resume of the stages of calculation, using a desk machine, 
for each of the points A, . . . , J, in the above range of y for each case. 

(i) Inviscid approximation to v1 
The following function given by Stuart (1954) was tabulated : 

(ii) Viscous correction to u1 

To follow the solution vl through the critical layer in more detail we rewrite 
the singular term as 

:(Y;-Y2)log($$z) = i % Y o + Y ) ( - v )  
x {log !I; - 1% (Yo + Y) - log( - 4 )  + J(Y0 + Y) €7 1% 7. 

Following the work of Tollmien (1929), the singularity vlogy occurring in 
the last term is replaced by the function B(7) which is a solution of the equation 

d4S d2B 
d y 4  dy2 

i-+v- = 1. 

This function has been tabulated by Meksyn & Stuart (1951), and Holstein 
(1950), and the present calculations draw on the values given by Holstein. 
Replacing 7 log 7 by (7) we find the viscous correction to v1 as 

2 2 2  
i@ Yo uy; - Y2) 1% 7 + 4 Y O  + Y) &7)l (7 > 01, 

&.”; [(y; - Y2) log ( - 7) + d Y O  + Y) R(7) - +WY: - Y2)1 and 

Combining these with the calculation (i), we obtain corrected values of ul. 

(7 < 0). 
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(iii) Viscous integral v3 
This function is given by 

The required values have been interpolated from the tabulation of the function 
given by Holstein. 

(iv) Th.e function B, 
The inviscid approximation to 6, given by (12) was first tabulated, but it was 

ultimately found that this is a very poor approximation to the function. A more 
accurate expression for 6, was afterwards used, derived by a formal differentiation 
of w1 as follows. From 

w1 = (y ;  - y2) (1 + 20a"y") + & P y ;  

we deduce 

in which P, P denote dsjdy and d2sldq2, respectively. These functions are also 
tabulated by Holstein, and one can then tabulate D2v1 directly, and thereafter 
obtain B1 = (D2 - a2) w,. 

(v) The function B, 
This function was tabulated from the formula 27, = (D2 - a2) v3, drawing on the 

values given by Holstein €or d2v3/dy2. 

(vi) The adjoint function 6 = 5, + 8B3 
6 was finally computed as a linear combination of 27, and ij, that makes 6 = 0 

at y = 1. A check on the calculation is that 0 6  should be 0 a t  y = 1, which is 
generally confirmed by the trend of the first differences as y + 1. 

In table 2 we give the values of 6 rounded off to three significant figures or 
decimal places. Figures 1-4 give the corresponding graphs. 

We conclude this section by drawing attention to one point of significance 
in the classical problem which emerges from the calculation, namely that the 
inviscid approximation to v, is a much more accurate approximation than the 
inviscid approximation to B,. This means that the critical layer is much more 
sharply defined for q5 than it is for 6. In illustration we give in figures 5 and 6 a 
plot of the real and imaginary parts of El for case A, together with the inviscid 
approximation which has a singularity at y = yo. The wide spread of the effect of 
viscosity on these functions is evident from the comparisonof the curves, Further, 
it is to be not,iced that (D2 - a2) q5 is a measure of the disturbance vorticity in the 
characteristic value problem for q5. This is alinear combination of B, and B,. Hence 
the disturbance vorticity is spread by the action of viscosity well outside the 
critical layer associated with the velocity disturbance. 
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1 *o 
0.98 
0.96 
0.94 
0.92 
0.90 
0.88 
0.86 
0.84 
0.82 
0.80 
0.75 
0.70 
0.65 
0.60 
0.55 
0.50 
0.45 
0.40 
0.35 
0.30 
0.25 
0.20 
0.15 
0.10 
0.05 
0.00 

1.0 
0.98 
0.96 
0.94 
0.92 
0.90 
0.88 
0.86 
0.84 
0.82 
0.80 
0.75 
0.70 
0.65 
0.60 
0.55 
0.50 
0.45 
0.40 
0.35 
0.30 
0.25 
0.20 
0.15 
0-10 
0.05 
0.00 

A 

R($) I($; 
0.0 0.0 
0.157 -0.197 
0.336 -0.824 
0.606 -1.81 
0,419 -2.95 

-0.239 -3.91 
-14.35 -4.82 
-2.77 -5.06 
-4.09 -44.54 
-5.06 -3.55 
-5.48 -2.39 
-4.68 -0'171 
- 3.41 0.23 
- 2.88 0.058 
- 2.60 0.0 
- 2.46 0.0 
- 2.35 0.0 
- 2.26 0.0 
- 2.20 0.0 
-2-15 0.0 
-2-10 0.0 
- 2.07 0.0 
- 2.04 0.0 
- 2.02 0.0 
- 2.01 0.0 
- 2.00 0.0 
- 2.00 0.0 

F 

'R($) I($; 
0.0 0.0 
1-64 0.178 
5.19 -3.37 
2.19 -11.07 

-7.61 -10.7 
-10.1 -2.73 
- 6.38 0.668 
- 4.48 0.221 
- 4.00 0.0023 
- 3.66 0.0094 
- 3.40 0.005 
- 2.90 0.0 
- 2.66 0.0 
- 2.50 0.0 
- 2.39 0.0 
- 2.30 0.0 
- 2.23 0.0 
-2.18 0.0 
-2.14 0.0 
- 2.10 0.0 
- 2.07 0.0 
- 2.05 0.0 
- 2.03 0.0 
- 2.02 0.0 
- 2.01 0 0  
- 2.00 0.0 
- 2.00 0.0 

TABLE 2. Real 

B c 
h 

h$) I($; k$) I(& 
0.0 0.0 0.0 0.0 
0.100 -0.271 0.065 -0.362 
0.323 -0.956 0.144 -1.19 
0.393 -1.97 -0.068 -2.25 
0.018 -3.07 -0.763 -3.22 

-0.689 -3.97 -1.88 -3.72 
-2.03 -4.42 -3.12 -3.67 
-3.17 -4.30 -4.13 -2.98 
-4.28 -3.64 -4.63 -1.97 
-4.98 -2.62 -4.60 -0.983 
-5.15 -1.52 -4.20 -0.267 
- 4.06 0.083 -3.06 0.183 
- 3.07 0.164 -2.67 0.0244 
- 2.70 0.019 -2.50 0.0014 
- 2.50 0.0016 -2.38 0.002 
- 2.40 0.0025 -2.30 0.0 
- 2.35 0.0 -2.21 0.0 
- 2.25 0.0 -2.16 0.0 
-2.17 0.0 -2.12 0.0 
-2.12 0.0 -2.09 0.0 
- 2.09 0.0 -2.06 0.0 
- 2.06 0.0 -2.04 0.0 
- 2.04 0.0 -2.03 0.0 
- 2.02 0.0 -2.01 0.0 
-2.01 0.0 -2.006 0.0 
- 2.00 0.0 -2.00 0.0 
- 2.00 0.0 -2.00 0.0 

G H 
A A 

'x($) I($? k$) I($; 
0.0 0.0 0.0 0.0 
1.08 0.087 0.676 0.0169 
3.63 -1.5 2.13 -0.898 
4.65 -6.17 3.68 -3.56 
0.661 -11.17 3.06 -7.35 

-85.51 -10.81 -0.64 -10.06 
-10'04 -5.39 -3.47 -9.73 
-8.64 -0.755 -8.82 -6.54 
- 5.96 0.608 -9.01 -2.64 
- 4.53 0.287 -77.39 -0.138 
- 4.08 0.030 -5.57 0.533 
- 3.40 0.007 -3.89 0.039 
- 2.93 0.0 -3.30 0.008 
- 2.70 0.0 -2.88 0.0 
- 2.54 0.0 -2.67 0.0 
- 2.41 0.0 -2.51 0.0 
- 2.32 0.0 -2.39 0.0 
- 2.24 0.0 -2.30 0.0 
-2.19 0.0 -2.23 0.0 
- 2.14 0.0 -2.17 0.0 
-2.10 0.0 -2.12 0.0 
- 2.07 0.0 -2.08 0.0 
- 2.04 0.0 -2.05 0.0 
- 2.02 0.0 -2.03 0.0 
-2.01 0.0 -2.01 0.0 
- 2.00 0.0 -2.00 0.0 
- 2.00 0.0 - 2.00 0.0 

and imaginary parts R($), I($), respecti1 

D E 

0.0 0.0 
0.052 -0.43 
0.003 -1.47 

-0.570 -2.60 
-1.70 -3.31 
-3.04 -3.25 
-4.05 -2.47 
-4.42 -1.36 
-4.15 -0.426 
- 3.61 0.053 
-3.12 0.176 
- 2.61 0.025 
- 2.47 0.0015 
- 2.36 0.0015 
- 2.25 0.0 
- 2.19 0.0 
- 2.15 0.0 
-2.11 0.0 
- 2.09 0.0 
- 2.06 0.0 
- 2.04 0.0 
- 2.03 0.0 
- 2.02 0.0 
- 2.01 0.0 
- 2.00 0.0 
- 2.00 0.0 
- 2.00 0.0 

I 
A r- 

R($)  46; 
0.0 0.0 
0.411 0.0027 
1.45 -0.688 
2.46 -2.31 
2.59 -4.72 
1.22 -7.16 

-1.52 -8.62 
-4.72 -8.34 
-7.19 -6.44 
-8.17 -3.78 
-7.71 -14.42 
- 4-74 0.423 
- 3.64 0.0544 
-3.18 0.0036 
- 2.89 0.003 
- 2.59 0.0 
- 2.45 0.0 
- 2.34 0.0 
- 2.26 0.0 
- 2.19 0.0 
-2.13 0.0 
- 2.09 0.0 
- 2.06 0.0 
- 2.03 0.0 
-2.01 0.0 
- 2.00 0.0 
- 2.00 0.0 

0.0 
0.085 

- 0.221 
- 1.45 
-3.10 
-4.18 
-4.19 
- 3.61 
- 3.03 
-2'71 
- 2.59 
- 2.43 
- 2.30 
- 2.23 
-2.18 
-2.14 
-2.11 
- 2.08 
- 2.06 
- 2.05 
- 2.03 
- 2.02 
- 2.01 
- 2.007 
- 2.00 
- 2.00 
- 2.00 

J 
A 

k$) 
0.0 
0.351 
1.08 
1.82 
2.03 
1.24 

- 0.601 
-3.11 
- 5.51 
- 7.06 
- 7.48 
- 5.48 
- 3.97 
- 3.29 
- 3.02 
- 2.61 
- 2.46 
- 2.35 
- 2.26 
-2.19 
-2.14 
- 2.09 
- 2.06 
- 2.03 
- 2.01 
- 2-00 
- 2.00 

rely, of the adjoint function 6. 

0.0 
- 0.706 
- 2.08 
-3.15 
-3.11 
- 2.02 
- 0,729 

0.033 
0.166 
0.086 
0.019 
0.0026 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

T$ 
0.0 

-0,118 
- 0,708 
- 1.09 
- 3.81 
- 5.84 
- 7.35 
- 7.79 
- 6.88 
- 5.04 
- 2.90 

0.176 
0.223 
0*0094 
0.0046 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
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5. Calculation of the perturbed neutral stability curve 
Havingfound the functions El;, 6,' and knowing $ = v1 + Sv,, it  is easy to calculate 

(D2 - az) $ = B, + SC,, and we are then in a position to work out the integrals in 
equation ( lo) ,  once a value for SR has been assigned. The computation of these 
integrals for each of the points A, . . ., J, for a series of values of SR from 0 to 1000 
was performed on the Mercury computer of the University of London Computer 
Unit, using Simpson's rule on the integrand values for y = 0 (0.05) 0.8 (0.02) 1.0. 
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FIGURE 6. Case A. The function $(el) and the inviscid approximation to $(GI). 

It then remains to select the direction in which the perturbation is made by 
choosing arbitrarily a linear relation between A, p, v, which together with the 
two real equations of (10) enable us to solve for A, p and v. 

Some remarks on the mathematics of the perturbation procedure are relevant 
here. If we consider the perturbations from the point P on the clean gas neutral 
stability curve in the (a, R)-planewe have seen that a straight lineof perturbation 



30 D.  H .  MichaeE 

points is obtained. This line of points is parallel to the tangent to the unperturbed 
curve at P, and the perturbed curve will be the envelope of the family of lines 
obtained by varying P. Each straight line will give a good approximation to a 
small section of the perturbed curve near its point of contact with this curve, 
but not at points a long way from the point of contact. This must be borne in mind 
when interpreting perturbation coefficients if a direction of perturbation is 

I 

0 
R 

FIGURE 7. Illustration of a difficulty in the perturbation procedure. 

chosen uniformly for all points of the original curve. A difficulty which arises 
may be illustrated by choosing, for example, perturbations at constant a for which 
h = 0. Let L denote the unperturbed curve, L' the perturbed curve in figure 7.  
P i s  a point on L at which the tangent is nearly parallel to the R-axis, and 1 is the 
perturbation line which touches L' a t  P'. In  such a case the perturbation at  
constant a will give the point Q ,  which is a long way from P' and L'. Clearly, for a 
given direction of perturbation in the (a, R)-plane points at  which the tangent to 
the original curve is in the direction of perturbation will be singular points for 
that perturbation. Nevertheless, the simplest way to get the curve L' is to specify 
uniformly a direction of perturbation and to use a second form of perturbation to 
fill in the gaps near singular points of the first. The results given here rely mainly 
on the perturbation a t  constant a. The reason for using this is that the curve is 
of most interest near the points where R is least, and this part of the curve is well 
approximated by a perturbation at  constant a. Perturbations at constant c 
were used to help bridge the gap near the singular point for constant a. The 
identification of spurious points of the perturbation depends on the value off, 
and the author has studied the perturbation for f = 0.05. 

Interpretation of the perturbation in this case is given in the graphs of figures 8 
and 9, which show the curves of neutral stability for a sequence of values of SR. 
For comparison the clean gas curvef = 0 is given in each case by the broken line; 
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the curve for XR = 500 cannot be distinguished from f = 0, on the scales used. 
Following the usual practice we have plotted a2 against RS. 

A t  SR = 0 figure 8 illustrates the reduction of R in the ratio I/(  1 + f )  as 
deduced by Saffman. As SR increases a feature of the curves is the reduction in 
the maximum wave-number for instability representing an increase in the mini- 
mum size of unstable wave cells. This effect is at  its strongest for SR - 10 when 
the maximum value of a2 is reduced to about 1.05. This increase in cell size may be 
explained in general terms by the increasing time delay of the dust in following 
the gas fluctuation velocity as SR increases since the dust will be less able to 
follow small scale motions in which the changes in direction of the fluctuation 
velocity of the gas are more pronounced, and failure of the dust to follow smaller 
scale fluctuations will stabilize the disturbance. As SR increases to higher 
values the range of a2 begins to increase again towards the limiting case in which 
fiSR + 0, which represents dust of vanishing size or vanishing number density. 

The results also show that the critical value of RS remains approximately 19 
in the range 1 < SR < 30. At higher values of SR a distinct instability arises 
a t  low wave-numbers, and at SR = 100, for example, Ri - 14 a t  a2 N 0-85. 
Another feature of the behaviour for large SR which is not understood at  present 
is the wide extension of the upper branch of the curves for SR = 50,100, to take 
in much higher values of R into the unstable region. However, this aspect of the 
results must be viewed with some reserve, since, quite apart from errors intro- 
duced in the approximations, the perturbations are clearly too large at  this value 
off for the results to be reliable. 

Perturbation curves were also studied for f = 0.1, but in general the perturba- 
tions are then too large and erratic for this method to be of use. However, the 
results obtained did suggest that for some values of SR in this case, the curve 
of neutral stability is in two parts, one of which is a closed loop giving an island of 
instability, such as those obtained recently by Miles (1960). But the method used 
here is not powerful enough to deduce such complicated perturbations with 
any certainty and accuracy. 

The author is greatly indebted to Miss S. Burrough of the Mathematics depart- 
ment, University College London, for her assistance with the numerical work 
involved in this paper, and also to the University of London Computer Unit for 
making available the services of the Mercury computer. 
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